

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

A Modeling Approach for AWS DynamoDB

Jim Ladd

Wazee Group, Inc.

December 23, 2018

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

Contents

Introduction ... 3

Overview ... 3

Problem Space .. 3

Solution Space .. 4

Summary ... 11

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

Introduction
NoSQL databases represent a fascinating technology and Amazon Web Services

DynamoDB, with its performance features and extremely low cost, is a very interesting

option. To facilitate the evaluation and potential transition to DynamoDB, this document

presents a modeling approach that is straightforward and consistent. A sample problem is

presented along with the logical view of the data. The physical view of the table is

created by following a set of design rules. The Python code used to create and query the

table is also presented.

Overview
DynamoDB is a NoSQL, fully managed database offering by Amazon Web Services

(AWS). AWS claims that it provides fast, predictable performance with seamless

scalability. Along with other NoSQL databases, DynamoDB provides storage and

retrieval capabilities that rely on keys associated with flexible structures.

Besides performance, scalability, and other technological features, DynamoDB has

another key factor; extremely low cost. Currently, the free tier being offered by AWS is

as follows based on a monthly per-region, per-payer basis

 25 GB of data storage

 2.5 million stream read requests from DynamoDB Streams

 1 GB of data transfer out, aggregated across AWS services

With such economic incentives, many of my clients are evaluating DynamoDB for their

storage needs. Even if the technical requirements don’t demand DynamoDB, clients are

considering incorporating the service for cost considerations alone. One challenge is that

the NoSQL paradigm is significantly different than the one of traditional relational

databases. The transition is not as quick and easy as some would estimate. Hopefully,

this document will assist with the evaluation of DynamoDB and the transition to this

exciting paradigm.

Problem Space
To explain the modeling approach, let’s assume a problem domain that lends itself to one

of the more interesting scenarios with traditional databases, the “many-to-many”

relationship. This example is a simple contact information problem where a person’s

different addresses are maintained over time.

Our information can be represented in a single table. Basically, a person has a

relationship with an address for a period of time including present day. The relationship

can be either a business or a residential type. The current address is denoted by a lack of

end date. The actual data used in the example is shown below.

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

FirstName LastName StreetAddress City State ZipCode Relationship StartDate EndDate

Bob Smith 1850 Wazee Street Denver CO 80202 Business 1/1/2000 12/31/2010

Bob Smith 1420 Stout Street Denver CO 80202 Business 1/1/2011

Bob Smith 1600 15th Street Denver CO 80202 Residential 1/1/2000

Sally Wilson 1850 Wazee Street Denver CO 80202 Business 1/1/2005 12/31/2015

Sally Wilson 4000 Larimer Street Denver CO 80202 Business 1/1/2016

Sally Wilson 2000 21st Street Denver CO 80202 Residential 1/1/2005

Joe Penton 1850 Wazee Street Denver CO 80202 Business 1/1/2009 12/31/2009

Joe Penton 4050 Logan Street Denver CO 80202 Business 1/1/2010

Joe Penton 5000 Blake Street Denver CO 80202 Residential 1/1/2009

Solution Space
Even though we will be using a NoSQL-based solution, one of the first steps I perform in

designing a solution is to create a logical view of the data with an Entity Relationship

Diagram (ERD). I favor graphical models, especially in the early phases of design,

collaborating with colleagues, and presenting to non-technical personnel. The logical

ERD for our example is show below:

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

PERSON

PERSON_ADDRESS

ADDRESS

IDPK

FIRST_NAME

LAST_NAME

IDPK

PERSON_ID

ADDRESS_ID

IDPK

STREET_ADDRESS

CITY

STATE

ZIP_CODE

START_TIMESTAMP_UTC

END_TIMESTAMP_UTC

RELATIONSHIP

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

Once the logical view becomes “stable”, the next step is to create the “physical” view of

the database. While there are many different ways to proceed, I wanted a design

approach that would 1) cover a wide range of problem domains, business needs, and

technical requirements, 2) be straightforward (i.e. few design rules), and 3) consistent

(consistency is a MAJOR factor to high levels of productivity).

Here are the rules for this approach:

 There is one table for each domain or service (i.e. Customer, Order, etc.).

 The PrimaryId is called “Id” and is a universally unique identifier (UUID).

 The SortKey is called “Type” and denotes the type of data structure.

 There is a default GlobalSecondaryIndex and has the name of “<table name> +
TypeIndex”. For example, for a table with the name of Customer will have an

index with the name of CustomerTypeIndex.

 The global secondary index has the “Type” as the PrimaryKey and the “Id” as the
SortKey.

 There can be several Attributes which compose the remaining data structure.

Applying these rules to our example, the physical view of the database is:

TABLE Contact

 PrimaryId SortKey Attributes

 Id (UUID) Type ("Person") FirstName

 LastName

 Id (UUID) Type ("Address") StreetAddress

 City

 State

 ZipCode

 Id (UUID) Type ("PersonAddress”) PersonId

 AddressId

 Relationship

 StartTimestampUTC

 EndTimestampUTC

INDEX ContactTypeIndex

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

 PrimaryId SortKey

 Type Id

The Python code used to create this table is very straightforward and can be used to

construct any table that follows the design rules. The code is:

import boto3

dynamodb = boto3.resource('dynamodb')

def createTable(myTableName) :

 table = dynamodb.create_table(

 TableName = myTableName,

 KeySchema=[

 {

 'AttributeName': 'Id',

 'KeyType': 'HASH' #Partition key

 },

 {

 'AttributeName': 'Type',

 'KeyType': 'RANGE' #Sort key

 }

],

 AttributeDefinitions=[

 {

 'AttributeName': 'Id',

 'AttributeType': 'S'

 },

 {

 'AttributeName': 'Type',

 'AttributeType': 'S'

 },

],

 GlobalSecondaryIndexes=[

 {

 'IndexName': myTableName + 'TypeIndex',

 'KeySchema': [

 {

 'AttributeName': 'Type',

 'KeyType': 'HASH' #Partition key

 },

 {

 'AttributeName': 'Id',

 'KeyType': 'RANGE' #Sort key

 }

],

 'Projection': {

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

 'ProjectionType': 'ALL'

 },

 'ProvisionedThroughput': {

 'ReadCapacityUnits': 1,

 'WriteCapacityUnits': 1

 }

 },

],

 ProvisionedThroughput={

 'ReadCapacityUnits': 1,

 'WriteCapacityUnits': 1

 }

)

dynamodb = boto3.resource("dynamodb")

createTable('Contact')

Once the data in our table is inserted in the “Contact” table, there are several different

ways to query the table. The remainder of this section of the document provides Python

snippets demonstrating some of those queries.

To find all of the persons in the table, the following snippet uses the boto3 API and the

global index:

dynamodb = boto3.resource("dynamodb")

tableName = 'Contact'

indexName = tableName + 'TypeIndex'

table = dynamodb.Table(tableName)

response = table.query(

 IndexName=indexName,

 KeyConditionExpression=Key('Type').eq('Person')

)

The result is:

{'Items': [

{'FirstName': 'Bob', 'Id': '1302c80a-7c61-4920-93a4-

23c44c931945', 'Type': 'Person', 'LastName': 'Smith'},

{'FirstName': 'Joe', 'Id': '63283cda-028f-4016-852c-

716c4e1b997e', 'Type': 'Person', 'LastName': 'Penton'},

{'FirstName': 'Sally', 'Id': '89e6210d-2dc8-4fb7-824d-

6eb77918f284', 'Type': 'Person', 'LastName': 'Wilson'}],

...

}

To retrieve a set of people by their last name:

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

response = table.query(

 IndexName=indexName,

 KeyConditionExpression=Key('Type').eq('Person'),

 FilterExpression=Attr('LastName').eq('Wilson')

)

The result is:

{'Items': [{'FirstName': 'Sally',

'Id': '89e6210d-2dc8-4fb7-824d-6eb77918f284',

'Type': 'Person',

'LastName': 'Wilson'}],

…

}

To find a specific person by their Id (actually this will retrieve any object by the Id value)

response = table.query(

 KeyConditionExpression=

 Key('Id').eq('1302c80a-7c61-4920-93a4-23c44c931945')

)

The result is:

{'Items': [{'Id': '1302c80a-7c61-4920-93a4-23c44c931945',

'FirstName': 'Bob', 'LastName': 'Smith', 'Type': 'Person'}],

…

}

To determine where Bob was working on 1/1/2005:

dateFormat = '%m/%d/%Y'

aDate = datetime.strptime('1/1/2005', dateFormat)

targetDateUTC =

int(aDate.replace(tzinfo=timezone.utc).timestamp())

response = table.query(

 IndexName=indexName,

 KeyConditionExpression=Key('Type').eq('PersonAddress'),

 FilterExpression=

 Attr('PersonId').eq('1302c80a-7c61-4920-93a4-23c44c931945') &

 Attr('Relationship').eq('Business') &

 Attr('StartTimestampUTC').lte(targetDateUTC) &

 Attr('EndTimestampUTC').gte(targetDateUTC)

)

The PersonAddresses are:

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

{'Items': [{'AddressId': 'ab3161c6-2462-49b3-957a-d1db9478532f',

'PersonId': '1302c80a-7c61-4920-93a4-23c44c931945',

'EndTimestampUTC': Decimal('1293753600'), 'StartTimestampUTC':

Decimal('946684800'), 'Relationship': 'Business', 'Id':

'eca6da1c-0c94-4b3e-8531-f4f9481330ef', 'Type':

'PersonAddress'}],

…

}

Now retrieve the Address by its Id:

response = table.query(

 KeyConditionExpression=

 Key('Id').eq('ab3161c6-2462-49b3-957a-d1db9478532f')

)

This is the address where Bob was working on 1/1/2005:

{'Items': [{'StreetAddress': '1850 Wazee Street', 'City':

'Denver', 'Id': 'ab3161c6-2462-49b3-957a-d1db9478532f', 'State':

'CO', 'ZipCode': '80202', 'Type': 'Address'}],

To determine where Bob is currently living:

response = table.query(

 IndexName=indexName,

 KeyConditionExpression=Key('Type').eq('PersonAddress'),

 FilterExpression=

 Attr('PersonId').eq('1302c80a-7c61-4920-93a4-23c44c931945') &

 Attr('Relationship').eq('Residential') &

 Attr('StartTimestampUTC').lte(targetDateUTC) &

 Attr('EndTimestampUTC').not_exists()

)

This is the map to the address:

{'Items': [{'PersonId': '1302c80a-7c61-4920-93a4-23c44c931945',

'AddressId': '1440e345-99b0-4c4a-941d-67bfbd03ba30',

'StartTimestampUTC': Decimal('946684800'), 'Relationship':

'Residential', 'Id': '713b7bfe-8e80-42f0-bbb0-3c94d98404fd',

'Type': 'PersonAddress'}],

…

}

Retrieve the address that was in the map:

response = table.query(

 KeyConditionExpression=

Copyright © 2018 by Wazee Group, Inc. All rights reserved.

Key('Id').eq('ab3161c6-2462-49b3-957a-d1db9478532f')

)

This is where Bob is currently residing:

{'Items': [{'StreetAddress': '1600 15th Street', 'City':

'Denver', 'Id': '1440e345-99b0-4c4a-941d-67bfbd03ba30', 'State':

'CO', 'ZipCode': '80202', 'Type': 'Address'}],

Summary
This document presented a set of rules for designing tables in DynamoDB. The approach

is straightforward and consistent. While not the ultimate solution for every case, the

approach should cover a wide range of projects and provide a great starting place.

